Balance of Hormones regulate growth and development

Environmental factors regulate hormone levels
 - light - e.g. phototropism
 - gravity - e.g. gravitropism
 - temperature

Mode of action of each hormone
1. Signal perception by a receptor on or in target cells.
2. Signal transduction and amplification via
 - \(R \rightarrow \text{ messengers} \rightarrow \text{ modify/activate protein} \)
 - \(R \rightarrow \text{ gene expression} \)
3. Response: change protein activity and/or gene expression
 \(\rightarrow \) growth/development response

Balance of IAA: cytokinin
Explain the effect on pith tissue
Hormones are used to regenerate transgenic plants.

21-13. Shoot and root development depend on ratio of IAA/CK

Auxin \(\rightarrow \) rooting

Cytokinin

shoot

21-4 Taiz. Tumour induction by cytokinin.
[Agrobacterium-mediated transformation - introducing new gene into plants]

Box 21-1 Taiz. Regenerating whole plants from transgenic cells or tissues.

Balance of hormones regulate growth and development
1. Shoot and root development depend on ratio of Auxin IAA: cytokinin
2. Leaf abscission depends on auxin and ABA
3. Seed development and germination depends on relative amount of ABA and GA

Effect depends on
 - Type of hormones
 - Concentration
 - Balance of hormones
19-27. Light causes redistribution of auxin to shaded side in phototropism.

Environmental signals regulate hormone levels via transport

Figure 1 Auxin response during differential hypocotyl growth. a–d, Expression of the DR5::GUS reporter in hypocotyl of untreated (a, c) or auxin efflux inhibitor (NPA)-treated (b, d) wild-type seedlings upon stimulation by light (a, b) or gravity (c, d). Insets show details of DR5::GUS expression. Scale bars, 400 µm. e, Asymmetric expression of DR5::GUS reporter in the apical hook of an etiolated seedling. Scale bar, 50 µm.

Auxin level changes in response to light and to gravity are due to auxin transport.

Figure 2. pin3 mutants.

b, c, pin3 hypocotyls are defective in gravitropic (b) as well as phototropic (c) responses.

d, pin3 mutants are defective in root gravitropism

19-33 Taiz. Gravitropism depends on distribution of hormones

What is the sensor for gravity?

19-30. Taiz. Root cap cells are important for sensing gravity

Amyloplast
Gravity may be sensed by a root cap cell according to the distribution of starch-storing plastids.

Mode of Action of hormones

1. Signal perception by a receptor in/on target cell
2. Signal transduction and amplification
3. Responses:
 - early gene expression
 - late gene expression
 - proteins activated
 - repressor removed

What causes cell elongation?
Acid pH causes wall extension.

Wall protein expansins are required for acid growth.

How does auxin stimulate cell elongation?
• Auxin induce H⁺ extrusion
• Ion uptake → osmotic water uptake
• Turgor pressure builds up
• Wall loosens, allowing cell wall to expand

How does auxin stimulate H⁺ extrusion?
• Activate the PM H⁺-pumping ATPase
• Increase synthesis of new PM H⁺ pumps
19-18. Model of auxin-induced H⁺ extrusion and cell expansion

19-31. Many SAUR (small auxin upregulated RNA) are transcription factors

Auxin induces expression of early and late genes

Early genes - [primary response genes]
- expressed in 5-60 min after adding auxin
- include transcription factors
- have roles in intercellular communication
- stress adaptation

19-41. IAA induce changes leading to degradation of proteins that repress early genes.

20-33. GA and barley seed germination
- Activate vegetative growth
- Mobilize stored food
- Q? How does GA stimulate amylase activity?
- What is the signal transduction pathway?
GA-Myb is an early response gene that regulates expression of α-amylase.

How is GA signal sensed?
How is that signal transmitted to increase amylase synthesis and secretion?