Vacuole Fusion at a Ring of Vertex Docking Sites Leaves Membrane Fragments within the Organelle

Cell 108, 357-69

Presented by Ruby Kish & Karen Swanson
March 17, 2005

Overview

- Previous models show boundary membrane dilating, spreading to the external membrane, boundary membrane is conserved
- Proposed model suggests that membrane is internalized and degraded

Morphology of Vacuole fusion

- Internalization of border membranes during fusion would mean that fusion occurs at vertices
- Vertices are the area where two boundary membranes or an outside and boundary membrane meet
- Outer membranes fuse, boundary membranes internalized

Proteins involved in yeast vacuole fusion

<table>
<thead>
<tr>
<th>Protein</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOPS Complex</td>
<td>Vps39p*, Vps33p</td>
</tr>
<tr>
<td>t-SNARE</td>
<td>Van3p</td>
</tr>
<tr>
<td>Rab</td>
<td>Ypt7p</td>
</tr>
<tr>
<td>Protein phosphatase I</td>
<td>Glc7p</td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td>Vac8p</td>
</tr>
</tbody>
</table>

Controls

- Vacuolar ATPase
- Vph1p, Vma11p
- Vacuolar Marker
- Pho8p

Evidence for fusion at vertices

1. Vertex starts off as concave, eventually relaxing, becoming flat
2. At vertex boundary membrane becomes mobile
3. There is a drop in fluorescence at the boundary region

Intraluminal membranes are a direct result of fusion and not due to endocytosis

- Only 5% of wildtype vacuoles show intraluminal membranes pre-fusion
- Mutants defective in two endocytotic pathways, as well as mutant defective in vacuole membrane turnover still contain intraluminal membranes post-fusion
Purified vacuoles fuse with the same frequency as vacuoles in vivo and also appear to fuse at vertices and create intralumenal membranes.

Docked Vacuoles lack pores

GFP-labelled Proteins don’t alter Vacuole Morphology

Protein distribution on docked Vacuoles

Protein Localization at Docking Vertices is Regulated and Selective
Morphometric Analysis of Protein Localization

Proteins localize to vertex after tethering

- Addition of excess Sec17p stops the fusion reaction at an early stage and prevents protein accumulation at the vertex.
- Addition of Sec18p binds to Sec17p removing the inhibitory effect on fusion and results in protein accumulation at the vertex.

Removal of Rab/Ypt7p from Docked Vacuoles doesn’t alter Protein Localization

- GDI and Gyp3p (GAP) dephosphorylated and remove Ypt7p (Rab) from membrane.

Table 1. Relative Abundance Levels of GFP-Tagged Proteins on Vacuole Membranes and Their Enrichment at Interfaces of Docked Vacuoles

<table>
<thead>
<tr>
<th>GFP-Tagged Proteins</th>
<th>Relative Abundance</th>
<th>Enrichment at Docking Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuolar marker</td>
<td>Photlp</td>
<td>N.D.</td>
</tr>
<tr>
<td>Vacuole inheritance</td>
<td>Vac8lp</td>
<td>150</td>
</tr>
<tr>
<td>t-SNARE</td>
<td>Vam3p</td>
<td>40</td>
</tr>
<tr>
<td>COP complex</td>
<td>Vps33p</td>
<td>30.3</td>
</tr>
<tr>
<td>GTPase</td>
<td>Ypt7p</td>
<td>20</td>
</tr>
<tr>
<td>Protein phosphatase I</td>
<td>Gbl7p</td>
<td>67</td>
</tr>
<tr>
<td>Vacuolar ATPase</td>
<td>Vph1p</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Vma11p</td>
<td>60</td>
</tr>
</tbody>
</table>

Mean protein:lipid ratios

- proteins on docked vacuoles localizes to vertices

- Ratio of GFP:lipid decreased in Sec17p treated vacuoles
- Addition of Sec18p + Sec17p restores wildtype phenotype
• There is more efficient Ypt7p extraction at the vertices and boundaries
• There is no change in localization of Vps33p and Vam3p after Ypt7p extraction

Conclusions

• Vacuoles fuse at vertices
 Appearance of intralumenal membrane
 Pores do not form prior to fusion

• Rab, SNAREs and Rab effectors concentrate at the vertices and catalyze reactions that lead to fusion